Computational Topology and the Unique Games Conjecture Joshua A. Grochow, Jamie Tucker-Foltz

March 29, 2018 presented by Vojtěch Kaluža

Dictionary

- (Unique Games) The problem UG(k), where $k \in \mathbb{N}$ is a CSP where each domain is \mathbb{Z}_k and each constraint is binary and is a bijection.
- (Γ -Max-2Lin(A)) Let A be an Abelian group. Γ -Max-2Lin(A) consists of those instances of UG where every variable has A as its domain, and each constraint takes the form $x_i x_j = c$ for some $c \in A$ (not necessarily the same for all constraints).
- (Gap Problem) Given a CSP \mathcal{P} , the associated gap problem Gap $\mathcal{P}_{c,s}$ is the promise problem of deciding, given an instance x, whether $OPT(x) \leq s$ or $OPT(x) \geq c$.
- (Gap preserving reduction) A polynomial-time gap-preserving reduction from $\operatorname{Gap}\mathcal{P}_{c,s}$ to $\operatorname{Gap}\mathcal{Q}_{c',s'}$ (say, both minimization or both maximization problems) is a polynomial-time function f such that $OPT_{\mathcal{P}}(x) \leq s \Rightarrow OPT_{\mathcal{Q}}(f(x)) \leq s'$ and $OPT_{\mathcal{P}}(x) \geq c \Rightarrow OPT_{\mathcal{Q}}(f(x)) \geq c'$. Similarly for \mathcal{P} a maximization and \mathcal{Q} a minimization problems.
- (UGC-completeness) A problem \mathcal{P} is *UGC-complete* if there are gap-preserving reductions from $\mathsf{Gap}\mathcal{P}_{\alpha,\beta}$ to $\mathsf{GapUG}_{1-\varepsilon,\delta}$ and $\mathsf{GapUG}_{1-\varepsilon,\delta}$ to $\mathsf{Gap}\mathcal{P}_{\alpha,\beta}$ such that for any $\alpha < 1, \beta > 0$ $\mathsf{Gap}\mathcal{P}_{\alpha,\beta}$ is NP-hard to approximate if and only if UGC holds.
- (Combinatorial CW-complex X in 2-dim)(cell-complex for short) 0-dim is just a (finite) set of points, which we denote by V(X). The 1-dim complex corresponds to graphs with multi-edges and loops, we denote the 1-simplices by E(X). The 2-dim complex is a multigraph to which we glue several (full) polygons in such a way that a boundary walk of each of these polygons is glued to a walk in E(X). Edges get mapped to edges (we cannot shrink an edge to a vertex). The set of 2-dim faces is denoted by F(X).
- (*d*-chains, $C_d(X, A)$, A Abelian group) The group of *d*-chains (d = 0, 1, 2) is the group of formal A-linear combinations of *d*-cells in X. This is isomorphic to the group A^{n_d} , where n_d is the number of *d*-cells in X (d = 0: vertices, d = 1: edges, d = 2: triangles or 2-cells).
- (Boundary operator ∂_d) For a 1-simplex [i, j] the ∂₁([i, j]) is a 0-chain [i] [j], and we extend ∂₁ to a function C₁(X, A) → C₀(X, A) by A-linearity. The operator ∂₂ is a boundary of a 2-cell [i₁, i₂, ..., i_ℓ], which is defined as the 1-cycle [i₁, i₂] + [i₂, i₃] + [i₃, i₄] + ··· + [i_{ℓ-1}, i_ℓ] - [i₁, i_ℓ], and we extend it to a map C₂(X, A) → C₁(X, A) by A-linearity.
 The operator ∂₂ = 0 and ∂₂ = 0 by definition

The operators $\partial_0 \equiv 0$ and $\partial_3 \equiv 0$ by definition.

- (*d*-cycles, $Z_d(X, A)$) $Z_d(X, A) := \ker \partial_d$, that is, those *d*-chains that have boundary 0. It is a subgroup of $C_{d-1}(X, A)$.
- (*d*-boundaries, $B_d(X, A)$) The image of the boundary map ∂_{d+1} , that is, those *d*-chains that are boundaries of some (d+1)-chains. It is a subgroup of $Z_d(X, A)$.

- (*d*-th Homology, $H_d(X, A)$) $H_d(X, A) := Z_d(X, A)/B_d(X, A)$. The quotient identifies those *d*-cycles that differ only by a *d*-boundary. $H_0(X, A) \cong A^c$ where *c* is the number of connected components, and if *X* is a closed 2-manifold then $H_2(X, A) = A$.
- (Problem 1-HomLoc) Given a cell complex X and a 1-cycle $a \in Z_1(X, A)$, determine a 1-cycle a' homologous to a with minimum support among all 1-cycles homologous to a.
- (*d*-cochain, $C^d(X, A)$) A *d*-cochain on X with coefficients in an Abelian group A is a homomorphism $C_d(X, \mathbb{Z}) \to A$; it is determined by its values on the *d*-cells of X.
- (Coboundary operator δ_d) Given a *d*-cochain *f*, its coboundary is the function $(\delta_d f) \in C^{d+1}(X, A)$ defined by $(\delta_d f)(\Delta) := f(\partial \Delta)$ for any (d+1)-cell Δ , and then extended by linearity (wrt. \mathbb{Z} and *A*).
- (*d*-cocycles, $Z^d(X, A)$) $Z^d(X, A) := \ker \delta_d$, or equivalently those *d*-cochains that evaluate to 0 on all *d*-boundaries. It is a subgroup of $C^d(X, A)$.
- (*d*-coboundaries, $B^d(X, A)$) The image of the *d*-coboundary map δ_d , that is, those *d*-cochains that are coboundaries of some (d-1)-cochain. It is a subgroup of $Z^d(X, A)$.
- (*d*-th Cohomology, $H^d(X, A)$) $H^d(X, A) := Z^d(X, A)/B^d(X, A)$.
- (Problem 1-CohoLoc(A)) Given a cell complex X and a 1-cocycle $a \in Z^1(X, A)$, find a cohomologous representative with minimal support.

Conjecture (Khot, Unique Games Conjecture (UGC)). For all $\varepsilon, \delta > 0$, there exists $k \in \mathbb{N}$ such that $\operatorname{Gap} UG(k)_{1-\varepsilon,\delta}$ is NP-hard.

Theorems

Lemma (1). (We can add a linear number of edges/constraints without affecting UGC-hardness) For a class \mathcal{A} of graphs, let $UG_{\mathcal{A}}$ denote the Unique Games Problem on graphs from \mathcal{A} . Given two classes of graphs \mathcal{A}, \mathcal{B} , let $f : \mathcal{A} \to \mathcal{B}$ be a polynomial-time computable function such that for all $G \in \mathcal{A}, E(G) \subseteq E(f(G))$ and $|E(f(G)) \setminus E(G)| = O(v)$ where v is the number of vertices in G of degree ≥ 1 . If the number of edges added is at most av, then there is a gap-preserving reduction from $UG_{\mathcal{A},1-\varepsilon,\delta}$ to $UG_{\mathcal{B},1-\varepsilon_0,\delta_0}$ where $\varepsilon_0 = \varepsilon + \Delta$ and $\delta_0 = \delta + \Delta$, for any $1 > \Delta > 2\delta a/(1+2\delta a)$ (in particular, with $\Delta \to 0$ as $\delta \to 0$).

In particular, if $UG_{\mathcal{A}}$ is UGC-hard, then so is $UG_{\mathcal{B}}$. The same holds with "UG" everywhere replaced by Max-2Lin or Γ -Max-2Lin.

Observation (10). *(1-CohoLoc is 1-HomLoc on surfaces)*

1-Cohomology Localization on CW complexes that are closed surfaces is equivalent to 1-Homology Localization on CW complexes that are closed surfaces.

Observation (15). $(\Gamma$ -Max-2Lin(A) on surfaces is 1-CohoLoc(A))

 Γ -Max-2Lin(A) on a cell decomposition of a surface X is equivalent (under gap-preserving reductions) to 1-CohoLoc(A) on the same cell decomposition of the same surface.

Theorem (16, by Xuong). A connected graph G has a one-face cellular embedding into a closed orientable surface if and only if there exists a spanning tree T such that every connected component of $G \setminus T$ has an even number of edges.

Theorem (14). (1-HomLoc on cell decompositions of closed orientable surfaces is UGC-complete) The Unique Games Conjecture holds if and only if for any $\varepsilon, \delta > 0$, there is some $k = k(\varepsilon, \delta)$ such that Gap1-HomLoc_{1- ε,δ} on cell decompositions of closed orientable surfaces with coefficients in \mathbb{Z}_k is NP-hard.