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Dictionary

• (Unique Games) The problem UG(k), where k ∈ N is a CSP where each domain is Zk and
each constraint is binary and is a bijection.

• (Γ-Max-2Lin(A)) Let A be an Abelian group. Γ-Max-2Lin(A) consists of those instances of
UG where every variable has A as its domain, and each constraint takes the form xi − xj = c
for some c ∈ A (not necessarily the same for all constraints).

• (Gap Problem) Given a CSP P , the associated gap problem GapPc,s is the promise problem
of deciding, given an instance x, whether OPT (x) ≤ s or OPT (x) ≥ c.

• (Gap preserving reduction) A polynomial-time gap-preserving reduction from GapPc,s to
GapQc′,s′ (say, both minimization or both maximization problems) is a polynomial-time function
f such that OPTP(x) ≤ s ⇒ OPTQ(f(x)) ≤ s′ and OPTP(x) ≥ c ⇒ OPTQ(f(x)) ≥ c′.
Similarly for P a maximization and Q a minimization problems.

• (UGC-completeness) A problem P is UGC-complete if there are gap-preserving reductions
from GapPα,β to GapUG1−ε,δ and GapUG1−ε,δ to GapPα,β such that for any α < 1, β > 0 GapPα,β
is NP-hard to approximate if and only if UGC holds.

• (Combinatorial CW-complex X in 2-dim)(cell-complex for short) 0-dim is just a (finite) set
of points, which we denote by V (X). The 1-dim complex corresponds to graphs with multi-edges
and loops, we denote the 1-simplices by E(X). The 2-dim complex is a multigraph to which
we glue several (full) polygons in such a way that a boundary walk of each of these polygons is
glued to a walk in E(X). Edges get mapped to edges (we cannot shrink an edge to a vertex).
The set of 2-dim faces is denoted by F (X).

• (d-chains, Cd(X,A), A Abelian group) The group of d-chains (d = 0, 1, 2) is the group of
formal A-linear combinations of d-cells in X. This is isomorphic to the group And , where nd is
the number of d-cells in X (d = 0: vertices, d = 1: edges, d = 2: triangles or 2-cells).

• (Boundary operator ∂d) For a 1-simplex [i, j] the ∂1([i, j]) is a 0-chain [i]− [j], and we extend
∂1 to a function C1(X,A)→ C0(X,A) by A-linearity.
The operator ∂2 is a boundary of a 2-cell [i1, i2, . . . , i`], which is defined as the 1-cycle [i1, i2] +
[i2, i3] + [i3, i4] + · · · + [i`−1, i`] − [i1, i`], and we extend it to a map C2(X,A) → C1(X,A) by
A-linearity.
The operators ∂0 ≡ 0 and ∂3 ≡ 0 by definition.

• (d-cycles, Zd(X,A)) Zd(X,A) := ker ∂d, that is, those d-chains that have boundary 0. It is a
subgroup of Cd−1(X,A).

• (d-boundaries, Bd(X,A)) The image of the boundary map ∂d+1, that is, those d-chains that
are boundaries of some (d+ 1)-chains. It is a subgroup of Zd(X,A).

1



• (d-th Homology, Hd(X,A)) Hd(X,A) := Zd(X,A)/Bd(X,A). The quotient identifies those
d-cycles that differ only by a d-boundary. H0(X,A) ∼= Ac where c is the number of connected
components, and if X is a closed 2-manifold then H2(X,A) = A.

• (Problem 1-HomLoc) Given a cell complex X and a 1-cycle a ∈ Z1(X,A), determine a 1-cycle
a′ homologous to a with minimum support among all 1-cycles homologous to a.

• (d-cochain, Cd(X,A)) A d-cochain on X with coefficients in an Abelian group A is a homo-
morphism Cd(X,Z)→ A; it is determined by its values on the d-cells of X.

• (Coboundary operator δd) Given a d-cochain f , its coboundary is the function (δdf) ∈
Cd+1(X,A) defined by (δdf)(∆) := f(∂∆) for any (d+1)-cell ∆, and then extended by linearity
(wrt. Z and A).

• (d-cocycles, Zd(X,A)) Zd(X,A) := ker δd, or equivalently those d-cochains that evaluate to 0
on all d-boundaries. It is a subgroup of Cd(X,A).

• (d-coboundaries, Bd(X,A)) The image of the d-coboundary map δd, that is, those d-cochains
that are coboundaries of some (d− 1)-cochain. It is a subgroup of Zd(X,A).

• (d-th Cohomology, Hd(X,A)) Hd(X,A) := Zd(X,A)/Bd(X,A).

• (Problem 1-CohoLoc(A)) Given a cell complex X and a 1-cocycle a ∈ Z1(X,A), find a
cohomologous representative with minimal support.

Conjecture (Khot, Unique Games Conjecture (UGC)). For all ε, δ > 0, there exists k ∈ N such that
GapUG(k)1−ε,δ is NP-hard.

Theorems

Lemma (1). (We can add a linear number of edges/constraints without affecting UGC-hardness)
For a class A of graphs, let UGA denote the Unique Games Problem on graphs from A. Given two
classes of graphs A,B, let f : A → B be a polynomial-time computable function such that for all
G ∈ A, E(G) ⊆ E(f(G)) and |E(f(G)) \ E(G)| = O(v) where v is the number of vertices in G of
degree ≥ 1. If the number of edges added is at most av, then there is a gap-preserving reduction from
UGA,1−ε,δ to UGB,1−ε0,δ0 where ε0 = ε + ∆ and δ0 = δ + ∆, for any 1 > ∆ > 2δa/(1 + 2δa) (in
particular, with ∆→ 0 as δ → 0).
In particular, if UGA is UGC-hard, then so is UGB. The same holds with “UG” everywhere replaced
by Max-2Lin or Γ-Max-2Lin.

Observation (10). (1-CohoLoc is 1-HomLoc on surfaces)
1-Cohomology Localization on CW complexes that are closed surfaces is equivalent to 1-Homology
Localization on CW complexes that are closed surfaces.

Observation (15). (Γ-Max-2Lin(A) on surfaces is 1-CohoLoc(A))
Γ-Max-2Lin(A) on a cell decomposition of a surface X is equivalent (under gap-preserving reductions)
to 1-CohoLoc(A) on the same cell decomposition of the same surface.

Theorem (16, by Xuong). A connected graph G has a one-face cellular embedding into a closed
orientable surface if and only if there exists a spanning tree T such that every connected component
of G \ T has an even number of edges.

Theorem (14). (1-HomLoc on cell decompositions of closed orientable surfaces is UGC-complete)
The Unique Games Conjecture holds if and only if for any ε, δ > 0, there is some k = k(ε, δ) such
that Gap1-HomLoc1−ε,δ on cell decompositions of closed orientable surfaces with coefficients in Zk is
NP-hard.
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